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Vaughan Jones and Knot Theory
A New Zealand Mathematician Unravels a New Invariant

which links Diverse Sciences in an Unforeseen Thread

What is so fascinating about Vaughan Jones's new polynomial invariant is not just that is has
settled one of the most fundamental unresolved problems in topology—the development of a
topological invariant which can distinguish left and right-handed simple knots—but that it
also provides one of those rare instances where abstract pure mathematics provides an
unforeseen relationship between diverse scientific disciplines.

Vaughan graduated from the University of Auckland in 1973 with an M.Sc. with first class
honours in Mathematics. He had also taken Physics to stage III. He then moved overseas to
take his Ph.D. at the Université de Génève, Switzerland, under the supervision of André
Haefliger. He is now a Sloan Foundation Fellow and Professor of Mathematics at the
University of California, Berkeley.

Vaughan Jones's work leading up to the discovery, was in Von Neumann algebras. This
branch of quantum mechanics deals with the mathematical treatment of such observables as
energy, position and momentum. In quantum mechanics, observables are represented by
operators in Hilbert space. Commuting operators represent observables which can be
measured simultaneously. The set of operators which commute with a given operator forms
an algebra and provides a basis for the definition of Von Neumann algebras. A Von Neumann
algebra on a Hilbert space is an algebra of bounded operators which is closed under the
transpose-conjugacy of operators (Ap,q) = (p,A*p), where (, ) is the inner product.

A factor is a Von Neumann algebra whose centre is C1. Any Von Neumann algebra can be
built out of a collection of factors. Vaughan Jones's discovery arose from work he was doing
on a class of factors called II1 factors. These in addition possess a trace, a linear functional

into C such that that tr(1) = 1 and tr(ab) = tr(ba) . The trace, which in matrix notation
corresponds to the sum of the diagonal entries, is all important in the development of the
Jones polynomial. The most striking feature of the trace is that its range on projections (e : e2



= e, e = e*) is the whole unit interval. By contrast, the normalized trace on projections of
matrix algebras Mn(C) are the n + 1 values {0, 1/n, 2/n, ..., 1). Projection operators

correspond to choosing an axis with which to measure observables such as spin. The trace
thus gives a measure of dimensionality which, in the case of a II1 subfactor, provides for

continuous dimensions. Another example of continuous dimensionality is provided by the
fractal dimension of such structures as space-filling curves, where the dimensionality gives a
measure between 1 and 2 for fractals whose length grows on a change of scale.

Vaughan was considering the relationship between a II1 factor M and a subfactor N when the

connection with knot theory emerged. Subfactors correspond to studying a subsystem of a
quantum mechanical system. Trace theory (for operators) then leads to the definition of the
index of N in M as

[M : N] = dimn(L2(M)),

a real number 1. In fact, though this index can take any value 4, its only values < 4 are
the numbers 4cos2(p/n), for integral n 3.

The proof of this result threw up a set of relations which so resembled those of the braid
group that it provoked a meeting between Vaughan Jones and knot theorist Joan Birman and
the new polynomial emerged.

Fig 1

A braid differs from a knot in that it is a set of descending curves that begin and end at a
corresponding set of points, as shown above (b). No curve can turn upwards at any point.
Any two N-braids are concatenated by joining one above the other. The resulting group is
easily generated by the elementary braids si as in (a), as in Artin's presentation:

{s1, s2, ... ,sn : sisi+1si = si+1sisi+1,sisj = sjsi if ||i - j|| 2}

In the proof of the dimensionality theorem, Jones was led to study a tower of subfactors
generated by the identity and N projections e1, e2, ... ,en. The relations between the ei were so

similar to the braid presentation that the substitution

qi = t1/2(tei - (1 - ei))

has the correct relations and enables the definition of a representation rt sending si to gi .

A tame link in 3-space is an embedding of one or more circles which can be represented as
polygons (so that for example they do not have an infinite sequence of smaller knots). The
above braid (b), denoted (b, 3) can be converted into the link (c) by joining corresponding
points to form b^ . Conversely, Alexander had proved that any tame link L can be represented



by some (b, n). This ultimately enables the definition of the Jones polynomial in terms of the
trace:

VL(t) = (–(t + 1)/t1/2)n - 1tr(rt(b))

where (b, n) is the braid corresponding to L.

The definition may also include a factor of te/2 (see the Notices article). The relation is so
indirect that it is essential to find a more amenable relationship to use for calculation.

Alexander discovered his polynomial in 1928. Subsequently in 1970 Conway, elaborating on
a theme of Alexander's original paper showed that the Alexander polynomials could be
calculated inductively as follows: Consider a knot or set of links and concentrate on a single
crossing point of a plane projection. Let L+, L0, L– denote oriented links which agree except

on a small disk, where they vary as shown below. The unoriented figure is eliminated in the
oriented case, but will be discussed later.

Fig 2

This sequence is very interesting, because it relates three knots rather than just the two which
are involved in the usual process of 'passage' in which a strand is divided and passed over
another before being rejoined (left versus right diagrams). The central diagram results from
exchange of strands so that the sequencing order on the knot is changed. This has profound
consequences in the case of DNA where the unknotting enzymes of such processes as
supercoiling cause passage, but the second process of recombinational exchange is also
possible. The two operations combined constitute the full repertoire of transformations under
the new polynomial and the only transformations possible for DNA.

Conway showed that the normalized Alexander polynomial obeys the recurrence relation

AL+(t) – AL–(t) + (t1/2 – t-1/2) AL0(t) = 0

Vaughan Jones's polynomial proved to obey a slightly different recurrence relation

tVL+(t) – t-1VL–(t) + (t1/2 – t-1/2) VL0(t) = 0.

The announcement of the Jones polynomial led to another astounding piece of mathematical
serendipity when eight mathematicians in five different groups independently and
simultaneously produced a two variable generalization of both the Jones and Alexander
polynomials which could even more sensitively distinguish links up to the two shown below.

This can be represented most conveniently as a homogeneous three variable polynomial, P
with all terms having zero net power in x, y, and z. In particular P obeys the recurrence
relation

xPL+(x,y,z) + yPL–(x,y,z) + zPL0(x,y,z) = 0.



The other polynomials can be expressed in terms of P as follows

AL(t) = PL(1, -1, t1/2 – t–1/2),      VL(t) = PL(t, t-1, t1/2 – t–1/2).

The two variable form, P' can be constructed in various ways but a convenient form is
P'L(x,z) = PL(x,x-1,z) which then obeys the recurrence relation

xP'L+(x,z) + x-1P'L–(x,z) + zP'L0(x,z) = 0.

P'L(x,z) = (–x-4 – x-2 + 2 + x2) + (x-4 + 2x-2 – 2 – x2) · z2 + (–x-2 + 1) · z4.

Fig 3

The traditional methods for computing the Alexander polynomial via the group of the knot
enable a knot with many crossing overs to have A calculated in one step via determinants
associated with the overpasses or through the homotopy group. By contrast, the algorithms
above grow exponentially with the complexity of the knot and become excessively complex
for more elaborate knots, however they have an intrinsic intuitive appeal in that the
polynomial of any knot can be calculated by building it up successively from the above
triplet relation beginning with the trivial polynomial 1 for a single unknotted circle. The first
such step is shown below:

Fig 4

hence by the recurrence relation we have

x · 1 + y · 1 + z · PL0 = 0  or  PL0 = (x + y)/z.

A further development of the polynomial saga has been the discovery of an independent
polynomial on unoriented links which involves all four diagrams of Fig. 2. In particular,
QL(x) is defined by

QL+ + QL– = x · (QL0 + QL00)

whence

Q88(x) = 1 + 4x + 6x2 – 10x3 – 14x4 + 4x5 + 8x6 + 2x7

Q10129(x) = 1 – 12x – 2x2 + 26x3 + 4x4 –   20x5 – 4x6 + 6x7 + 2x8



As is shown above, this invariant can distinguish the knots of Fig. 3, but it cannot tell links
from their mirror images. Kaufmann has refined Q to include orientation by a clever route
which can also enable a computation of the Jones polynomial without having to consider the
order of the decompositions of individual nodes. Because the Q polynomial relationship
involved two uncrossed types, it is possible to use it to reduce the projection of a link to
unknotted components. Study of the writhe of the resulting graph enables orientation to be
included in the new polynomial R. In fact it has been shown that

VL(t) = (t–3/4, – (t–1/14 + t1/4))

so the Jones polynomial is a special case of both P and R.

The connection with molecular biology is every bit as interesting as the connection with
quantum mechanics. The double helix of DNA and RNA has one complete turn for every ten
base pairs. The human haploid genome contains 3 x 109 base pairs, and hence approximately
108 twists per cell. In addition supercoiling, linking and recombination between strands gives
nucleic acid dynamics an exceedingly complex knotting behaviour. Single nucleic acid
strands are oriented by their sugar-phosphate polarity. Over the last few years several types of
topoisomerase enzyme have been discovered which permit a variety of knotting and linking
operations. Type 1 topoisomerases cut a single DNA strand and permit the passage of another
strand. They can relax supercoiling by allowing a double helix to unwind around one strand
and can link and knot single stranded loops. Type 2 gyrases can perform similar operations
on double-stranded loops. Resolvase by contrast can extrude a specific portion of a twisted
loop to form two linked loops. In addition, recombinational processes such as occur in sexual
crossing-over in meiosis relate PL0 to PL+ and PL–.


